

Course Outlines

- Basic Algebra
- Functions
- What do we call 'Statistics'?
- Measures of Central Tendency
 - Arithmetic Mean
 - Median
 - Mode

Course Outlines

- Measures of Dispersion
 - Range
 - Mean Deviation
 - Variance and Standard Deviation
- Hypothesis Testing
 - One Population
 - Two Populations
 - More than two Populations

Biological Function in Fisheries Biology

- Linear function
- Power function
- Exponential function
- Asymptotic function
- Logistic function
- Parabolic function
- Gompertz function

VANAVAVAVA

What do we call 'Statistics'?

- Definition
 - Statistics may be defined as the collection, organization, presentation, analysis and interpretation of numerical data
- Types of Statistics
 - Descriptive Statistics: the phase of statistics which seeks only to describe and analyze a given group without drawing conclusions or inferences about a larger group.
 - Inductive or Inference Statistics: the phase of statistics which seeks to describe and analyze a given group or sample and draw conclusions or inferences about a larger group.

What do we call 'Statistics'? Population and Sample Population: the total set of items defined by a characteristics of these items which we call 'Parameter(s)' Sample: a finite set of items drawn from a population, which serves as a representative of such population which we call 'Statistics' Populatio Samplin Sample(s) Parameter(← Statistics Statistics

TATATATATA

What do we call 'Statistics'?

- Types of Variable
 - Continuous Variable: a variable which can theoretically assume any value between two given values, e.g. numerical values of length and weight
 - Discrete Variable: a variable which cannot assume any value between two given values, e.g. sex, no. of fishermen, no. of gears
- · Grouped and Ungrouped Data
 - Ungrouped Data : Ordinary data
 - Grouped Data: Data which we categorized in 'Class Intervals'; mark; and examine their 'frequency' in each interval.

_

Measures of Central Tendency

- Arithmetic Mean
 - the sum of the set of values divided by their number
 - for ungrouped data:

• for grouped data:

ARABARARA

Measures of Central Tendency

- Median
 - the value of the middle item or the mean of the values of two middle items when the data are arranged in the order of magnitude.

Measures of Central Tendency

- Mode
 - the value which occurs with the highest frequency

CANADADADA

Measures of Dispersion

- Range
 - highest value minus the lowest value

1	

Measures of Dispersion

- Variance
 - for grouped data:

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n - 1} = \frac{n \sum x_{i}^{2} - (\sum x_{i})^{2}}{n(n - 1)}$$

• for ungrouped data:

$$s^{2} = \frac{\sum f_{i}(x_{i} - \bar{x})^{2}}{\sum f_{i} - 1} = \frac{\sum f_{i} \sum f_{i} x_{i}^{2} - (\sum f_{i} x_{i})^{2}}{\sum f_{i}(\sum f_{i} - 1)}$$

• Standard Deviation

$$s = \sqrt{s^2}$$

5 Steps of Hypothesis Testing

- Create Hypothesis
- Select 'alpha' or confidence level
- Choose the right test statistics and calculation
- Compare with 'Critical Value' or checking the P-value
- Conclusion in 'Human Words'

